Journées Teratec

Risques, énergie et simulation haute performance : quelques démonstrateurs récents

E. de Rocquigny Chercheur senior - EDF R&D Mission transverse "Incertitudes, risques, environnement" etienne.derocquigny@edf.fr

J. Bonelle, X. Warin, JY Berthou, JP Gaussot, A. Arnaud, J.F Hamelin, M. Barrault (EDF R&D)

HPC and risk computation

Stakes for a power producer

 Numerical challenges & recent examples associated to risk quantification
 Risk computation (or uncertainty propagation)

Importance ranking of risk/uncertainty factor (or sensitivity analysis)

•Stochastic optimisation in high dimension

Ochallenges & perspectives ahead for HPC

Disclaimer : subsequent views do not commit EDF R&D in any respect to the actual or recommended practice in the field of risk assessment or environmental control

Major areas for risk quantification for a power producer

The assets

- 58 nuclear power plants on 19 areas (86.6% of production)
- 14 thermal power plants (4.6% of production)
- 440 hydro plants and 220 dams (8.8% of production)
- Solar energy, wind power (< 0.5% of production)

Customers

- Different kind of customers (industry, domestic, ...)
- Many kinds of contracts (for example swing where the producer can suspend delivery)

Asset management issues

- Manage water stocks, fuel, customers contracts.
- Goal :
 - maximize the expected cash flow
 - o minimize risk
- Under constraints
 - Satisfy the customer load (no shortage of power)
 - Respect pollution constraints
 - Hazards :
 - o Demand
 - Hydraulicity (inflows)
 - Weather patterns (cold weather means high demand)
 - o Market prices
 - Assets outages (linked to market prices if high demand)

Stochastic control problem in high dimension

Plant safety issues

• Nuclear safety

William W

- Internal agressions
 - Conventional accident Probabilistic CFD & mechanics, gradually multi-scale
 - Mechanical margins pressurised vessel and other equipment
 - Complex system reliability Million-branch event or binary trees
- External agressions : flood & sea levels, temperatures, winds, earthquake ...
- O Dam safety
 - Flood and external initiators
- Life-cycle (plant asset) management & maintenance issues

Deterministic / Probabilistic risk assessment

Scientific computing + stochastics

Reliability

- Static risk & reliability models
 - Failure/event trees, BDD, BBN etc. + lifetime statistics

$$e = \sum_{i} \left[e^{in^{i}} \cdot \prod_{j_{i}(\underline{d})} e^{sy^{j_{i}}} \right] = G\left(\underline{e}^{in}, \underline{e}^{sy}, \underline{d}\right)$$
$$E^{j} = I_{t=T_{i}} \quad T_{j} \sim f_{T}\left(t_{j} | \underline{\theta}_{T}\right)$$

- Dynamic reliability models
 - « Chained » renewal processes $Z_t = \sum_j l_{E^{j_t}} g_j(\underline{X}_j, \underline{d})$
 - e.g. Probabilistic life cycle management
 - $\underline{\dot{X}}_{t} = F[\underline{X}_{t}, \underline{E}_{t}]$ • « Coupled » dynamic processes $given \underline{E}_t$

(MP, PDMP ...)

IPRA mixed models (Integrated Probabilistic Risk Assessment)

- Mixing probabilistic physics, external agressions & reliability
 - Nuclear Level 2 Probabilistic Safety Analyses
 - (Helton, 1993)

Source: ARAMIS / INERIS

Stakes for a power producer

- Industrial and environmental systems under risk & uncertainty
- Making the best of all information available (statistical data, phenomenological knowledge, expertise ...) to
 - optimise the systems at various time scales
 - control safety standards
- ... valuing advanced maths & computing
 - Statistical modeling & probabilistic computing
 - Numerical analysis
 - Decision-theory
 - HPC

Numerical challenges & recent examples

ALTERNA,

Risk computation (simulation, uncertainty propagation, ...)

ALL NO.

Risk modeling & the risk measure

• The risk measure, a quantitative tool to property C_z over the period ΔT , in order to

• Rank / Optimise risky alternatives $C_Z : \{c_Z(\underline{d}_A) \leq c_Z(\underline{d}_B)\}$ • Control compliance with a risk limit (or budget) $C_Z : \{c_Z(\underline{d}) \leq c_s\}$ $c_Z(\underline{d}) = F[\underline{z}(\omega, \underline{d})]$ e.g. $c_Z(\underline{d}) = EU(z) = \int_{\omega} U(z(\omega)) dP(\omega)$ $c_Z(\underline{d}) = EU(z) = E1_{Max_{[t_1, t_1 + \Delta T]}Z_t(\omega) \leq z_s} = P[Max_{[t_1, t_1 + \Delta T]}Z_t \leq z_s | \underline{d}]$

Computing the risk measure

The key case of threshold exceedance

A key risk measure is

$$c^{(1)}{}_{z} = E_{\underline{\theta}} P_{X_{t}|\underline{\theta}}(Z < z_{s}) = \int_{\theta, x_{t}} l_{G(x_{t},\underline{d}) < z_{s}} f_{X_{t}}(x_{t}|\underline{\theta}) \pi(\underline{\theta}|\varsigma) dx_{t} d\underline{\theta}$$

enjoying a number of algorithms

- Piecewise closed-form integration
- Accelerated methods
 - Black-box approximation and variance reduction
 - Grey box : value phenomenological regularity (e.g. monotony)

Risk computation : the need for HPC

●... or massive distribution

$$e^{(1)}_{z} = E_{\underline{\theta}} P_{X_{t}|\underline{\theta}}(Z < z_{s}) = \int_{\theta, x_{t}} l_{G(x_{t},\underline{d}) < z_{s}} f_{X_{t}}(x_{t}|\underline{\theta}) \pi(\underline{\theta}|\varsigma) dx_{t} d\underline{\theta}$$

 Theoretically trivial in the simplest Monte-Carlo/Wilks formulation

- ... but requiring adapting Blue Gene-like operating features
 - see Example APRP hereafter
- •To be done on hybrid accelerated algorithms (such as meta-modeling, adaptive importance sampling ...)
 - ... some are facially sequential, but could be partially parallelised
 - Either inside each run of G(.) code parallelism
 - Or on the Monte-Carlo parts partial distribution

Critère de sûreté: la température maximale des gaines de combustibleatteinte durant un APRP GB doit être inférieure à un seuil Tseuil pour un niveaude risque donné:P (PTG < Tseuil) > 95%

Nombre minimum de tirages tel que le i-ème max. soit un estimateur de Wilks			
Maximum	2 nd max.	3 rd max.	4 th max.
59	93	124	153

Mise en œuvre de la méthode 8000 simulations de Cathare en parallèle sur Blue Gene...

...et analyse des 8000 températures calculées

Computing features and challenges

- Characteristics (BG/L 23 Tflops)
 - ➢ 8000 (single-core) proc. over 4000 nodes − 0,7 GHz
 - 0.25 Go per proc. but server memory limitations forced a maximum of 1000 nodes
- Performance
 - Each run is x2 to x4 longer than on the equivalent PC
 - Massive distribution achieves a speed-up from 20 yr-CPU down to 40 dy (x200)
- Challenges
 - Significant failure rate, essentially due to physical-numerical instability sensititivies
 - Automatic time step adapting faces limitations due to extensive space-exploring ... well beyond traditional code qualification control

XEGZCCAleatory uncertainty is modelled
by a random vector joint pdf
XE
$$f \in \mathcal{F}_{XE}(x \in |\mathcal{G}_{XE})$$
 $f \in \mathcal{F}_{XE}(x \in |\mathcal{G}_{XE}, d)$ Estimating \mathcal{G}_{XE} with finite data
sets => Epistemic uncertainty
in
 $\mathcal{G}_{XE} \sim \pi(\mathcal{G}_{XE}|\zeta)$ The specific risk measure relevant to
decision-making
 $c_z = P(z > z_z), var Z$ Even if \mathcal{G}_X was perfectly known, CPU
limitations on propagation => residual
variance on the estimation of
 $\hat{C}_z(\mathcal{G}_{XE})$

Risk measure = tougher computational challenges

$$c_{Z}(\underline{d}) = \mathcal{F}[\underline{z}(\boldsymbol{\omega},\underline{d})] = IF\left\langle M(.), f_{XE}(.|\underline{\theta}_{xe}) \pi(\underline{\theta}|\varsigma) \right\rangle$$

Two-level sampling

• $\underline{\theta}_{j_{1}} \sim \pi$ • $(\underline{X}, \underline{E})_{j_{2}} \sim f_{XE/} |\underline{\theta}_{j_{1}}$ $c_{Z}(\underline{d}) = P_{\underline{\Theta}} [P_{\underline{Z}|\underline{\theta}}(Max_{t}Z_{t} \leq z_{s}|\underline{\Theta}, \underline{d}) < \alpha]$ $= \int_{\theta} I_{[I_{Max_{t}Z_{t} \leq z_{s}}f_{\underline{Z}}(.|\underline{\theta})] < \alpha} \pi(\underline{\theta}|\underline{\varsigma}) d\underline{\theta}$

Maximising

- Over time $c_Z(\underline{d}) = P[Max_{[t_1,t_1+\Delta T]}Z_t \le z_s|\underline{d}]$
- Over some of the components

$$c_{Z}(\underline{d}) = Max_{\underline{x}_{pn} \in \Omega_{x}}c_{Z}(\underline{d}|\underline{x}_{pn}) = Max_{\underline{x}_{pn} \in \Omega_{x}}P[Max_{[t_{1},t_{1}+\Delta T]}Z_{t} \leq z_{s}|\underline{d},\underline{x}_{pn}]$$

Importance ranking of risk/uncertainty factors (sensitivity analysis, design of computer experiments ...)

Importance Ranking (sensitivity analysis)

- Variance-based-ranking : explain contribution of input X_i to variance of output Z

$$Var(Z) = \sum_{i=1}^{p} V_i(Z) + \sum_{i < j}^{p} V_{ij}(Z) + \dots + V_{12 \dots p}(Z)$$

$$S_i = \frac{V[E(Y \mid X_i)]}{V(Y)} ; S_{ij} = \frac{V[E(Z \mid X_i \mid X_j)]}{V(Z)} - S_i - S_j ; \dots ; S_{Ti} = S_i + \sum_j S_{ij} + \dots$$

Solution of the second secon

- Straightforward interpretation in % ranking
- Algorithms to estimate Sobol indices :
 - Monte-Carlo > 1000 runs / input for full indices (~30 for additive-dominated rank correlation approximation)
- FAST (~1000 runs / input) : decompose through Fourier transform of G(.)
- Quasi-Monte-Carlo (< 1000 runs / input) : deterministic sampling sequences
- Meta-modeling

A recent example : a double HPC challenge

• Securing lifetime of the Reactor Pressurized Vessel

• A multi-physics and multi-scale challenge ...

• Both thermal hydraulics and rupture mechanics are needed

• TH System and local features are both essential to track margins

>> chain Cathare + NEPTUNE_CFD-SYRTHES + Cuve2DG

CL1 CL2

266.90 242.60 218.30 194.00 169.70

o... under uncertainty

moving from deterministic margins to a probabilistic risk

- traditionally only *mechanical* parameters are probabilised
- Yet, how much do the thermal-hydraulic uncertainties contribute to the risk ?

>> Propagate & rank uncertainty throughout (via Open TURNS)

William W

Full uncertainty sampling

Probabilistic sampling and ranking in two stages N1 simulations of Cathare-NEPTUNE_CFD-SYRTHES N1*N2 (conditional) simulations of the Cuve2DG right-end

Probabilising both thermal-hydraulics & mechanical uncertainties

 means computing (flaw initiation) risk under (thermal-hydraulic transient) uncertainty

• Level-2 Thermal-hydraulic uncertainties xi + level-1 thermal-mechanical uncertainties yi both random

•A double-level Monte-Carlo is undertaken

Computing features and challenges

- Bottleneck = CFD >> only step where Blue Gene is mobilised
- Characteristics (BG/P 112 Tflops)
 - > 32 000 (single-core) proc. grouped over 8 000 nodes 0,85 GHz
 - > 0.50 Go per proc.
- Performance through a mixture of parallel/distributed computing
 - Each unit CFD run was optimised over up to 32-64 nodes (128-256 proc.), improving but far from scalability
 - Planned distribution of up to 100 simultaneous independent Monte-Carlo runs (i.e. 25 600 procs)
 - Anticipated overall computing time for a 200-serie = 2*60 days (instead of 200*40 days on standard cluster)
- Challenges
 - CFD involves the coupling between Neptune_CFD and Syrthès, with highly unbalanced computing power requirement
 - It is uncertain whether Monte-Carlo sampling will lead to qualified/stable parameter ranges
 - Statistical interpretation of two-level ranking is complex Risques, énergie et HPC – Teratec 2009 – juillet 2009 – © EDF

A challenge for importance ranking – double-level sampling

- Scientific Challenge
 - Traditional methods rank $(G(X_j))_{j=1...N}$
 - •With one-level sampling

•With respect to output variance

oIn our case $N_1 N_2 = 200 (100\ 000)$ runs in mixed two-level sampling + look for failure probability instead of variance

Solutions under way

- Rank the transformed output $1_{G(X)<0}$
- Rank conditional probabilities
- 0...

Stochastic optimisation

Annual States

Moving from simulation to optimisation of a risk measure in time

• Step 1 - prior design optimisation w.r.t. risk measure

$$\operatorname{Min}_{d} EU[G(X_{t},\underline{d})] = \operatorname{Min}_{d} \int_{X_{t}} U[G(x_{t},\underline{d})] f_{X_{t}} dx_{t}$$

• Step 2 - prior optimisation of posterior flexibility w.r.t. risk measure $\Rightarrow Min_{(D(i))_{i}}EU\begin{bmatrix}C_{1}[G(\underline{X}(t),\underline{d}(1),t)]\\+EU\begin{bmatrix}C_{2}[G(\underline{X}(t),\underline{d}(2),t)]\\+EU\begin{bmatrix}\cdots\\C_{n}[G(\underline{X}(t),\underline{d}(n),t)]|T_{t}\end{bmatrix}|T_{2},..T_{t}\end{bmatrix}|T_{1},..T_{t}\end{bmatrix}$ Done for Power Asset management

Stochastic control problem in high dimension :

Number of state variable linked to :

•Number of hazards

•Number of stock to be dealt with

- Use Monte Carlo for simulations for hazards (flexible, easy to use for risk (thousands of scenarios possible))
- Backward algorithm (Longstaff Schwarz version)

```
for t \leftarrow (M-1)\Delta t to 0

for c \in \{\text{admissible stock levels}\}

for s \in \{\text{possible hazard levels}\}

\tilde{J}^*(s,c) = \infty

for nc \in \{\text{possible commands for stocks}\}

\tilde{J}^*(s,c) = \max\left(\tilde{J}^*(s,c), \phi(nc) + \mathbb{E}(J^*(s^*,c+nc)|s)\right)

J^* \leftarrow \tilde{J}^*;
```

At t = 0 interpolate J for current stock c and current uncertainty s

Algorithm problematic

- Sequential in time
- Rather sequential for nc nest
- Parallel for c nest if all $\int_{-\infty}^{+\infty}$ are available in memory for all (c,s)
 - \circ N_i number of points discretization in each direction.
 - $\prod N$ is the number of c to explore
 - IDEA : parallelize the c nest by splitting the hypercube

 N_i

Use of communication scheme for optimisation and simulation too (commands spreads with stocks levels on processors)

Test case presentation

- Optimization and simulation on 518 days with time step of one day
- One stock of water :
 - 225 points discretizations (c)
 - 5 commands (0 to 5000 MW each day for nc)
- 6 stocks of month future products with delivery of energy (peak and off peak hours)
 - 5 points discretization for each one
 - 5 commands (-2000 MW (sell) to 2000Mw (buy) tested every 2 weeks
- Aggregated view of thermal assets.
- Up to 225*5^6 points discretizations and 5^7 commands to tests

Results Intel 256 *2 cores, BG 8192*4 cores

Comparison BG, cluster without multithreading

Challenges ahead for HPC risk

ANTIMAN,

HPC challenges

- Typically three levels of greediness to optimise
 - Underlying engineering model may require parallel computing (no uncertainty) >> e.g. CFD
 - Handling risk analysis mixes
 - A layer of probabilistic sampling
 - Fully distributed if standard Monte-Carlo, but more generally mixed sequential / parallel >> e.g. adaptive importance sampling
 - A layer of optimisation
 - Because of *mixed deterministic-proba.* risk criteria
 - Because calibrating the uncertainty model requires *inverse techniques*
 - Because the final goal is to optimise under risk, not just compute risk

How do we efficiently allocate computing power in 3 such layers ?

References

- de Rocquigny E., Devictor N., Tarantola ed. (2008), Uncertainty in industrial practice A guide to Quantitative Uncertainty Management, John Wiley & Sons
- Saltelli A., Tarantola, S., Campolongo F. & Ratto M. (2004) Sensitivity Analysis in *Practice: A Guide to Assessing Scientific Models*, John Wiley and Sons
- Helton, J. (1993) Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal, *Rel. Eng. & Syst. Saf.*, 42, 327-367
- Berthou JY, Hamelin JF, de Rocquigny E., (2009), XXL Simulation for XXIst Century Power Systems Operation, Accepted in International Journal of High Performance Computing Applications.